VBCC Operational Amplifiers (Op Amps) 3

Reset All
Part RoHS Manufacturer Amplifier Type Temperature Grade Terminal Form No. of Terminals Package Code Package Shape Total Dose (V) Package Body Material Nominal Unity Gain Bandwidth Maximum Negative Supply Voltage Limit Low-Bias Maximum Input Offset Voltage Maximum Average Bias Current (IIB) Surface Mount No. of Functions Minimum Common Mode Reject Ratio Technology Screening Level Nominal Common Mode Reject Ratio Maximum Supply Current Nominal Negative Supply Voltage (Vsup) Architecture Programmable Power Packing Method Nominal Supply Voltage / Vsup (V) Power Supplies (V) Package Style (Meter) Package Equivalence Code Maximum Input Offset Current (IIO) Minimum Slew Rate Sub-Category Nominal Slow Rate Maximum Non Linearity Maximum Supply Voltage Limit Terminal Pitch Maximum Operating Temperature Maximum Bias Current (IIB) @25C Maximum Common Mode Voltage Nominal Response Time Output Type Frequency Compensation Minimum Voltage Gain Minimum Operating Temperature Terminal Finish Nominal Voltage Gain Terminal Position Low-Offset JESD-30 Code Maximum Voltage Gain Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Minimum Output Current Nominal Bandwidth (3dB) Micropower JESD-609 Code Maximum Time At Peak Reflow Temperature (s) Peak Reflow Temperature (C) Length Wideband Power

TLV9001IDPWR

Texas Instruments

Operational Amplifier

Automotive

Butt

5

VBCC

Square

Plastic/Epoxy

1 MHz

Yes

2000 uV

Yes

1

63 dB

CMOS

77 dB

77 μA

Voltage Feedback

No

Tape And Reel

5 V

Chip Carrier, Very Thin Profile

SOLCC5,.03,18

Operational Amplifiers

2 V/us

6 V

0.019 in (0.48 mm)

125 °C (257 °F)

Yes

158489

-40 °C (-40 °F)

Nickel/Palladium/Gold/Silver

Bottom

No

S-PBCC-B5

2

0.016 in (0.4 mm)

0.031 in (0.8 mm)

Yes

e4

260 °C (500 °F)

0.031 in (0.8 mm)

No

No

TLV9061IDPWR

Texas Instruments

Operational Amplifier

Automotive

Butt

5

VBCC

Square

Plastic/Epoxy

10 MHz

2000 uV

0.5 pA

Yes

1

80 dB

CMOS

87 dB

750 μA

5 V

Chip Carrier, Very Thin Profile

Operational Amplifiers

6.5 V/us

6 V

0.019 in (0.48 mm)

125 °C (257 °F)

-40 °C (-40 °F)

Nickel/Palladium/Gold/Silver

Bottom

S-PBCC-B5

2

0.016 in (0.4 mm)

0.031 in (0.8 mm)

e4

260 °C (500 °F)

0.031 in (0.8 mm)

PTLV9001IDPWR

Texas Instruments

Operational Amplifier

Automotive

Butt

5

VBCC

Square

Plastic/Epoxy

1 MHz

2000 uV

Yes

1

CMOS

77 dB

5 V

Chip Carrier, Very Thin Profile

Operational Amplifiers

2 V/us

6 V

125 °C (257 °F)

-40 °C (-40 °F)

Bottom

S-PBCC-B5

0.016 in (0.4 mm)

0.031 in (0.8 mm)

0.031 in (0.8 mm)

Operational Amplifiers (Op Amps)

Operational amplifiers, or op-amps for short, are electronic circuits that provide a high gain amplification of an input voltage signal. They are widely used in electronic circuits for various signal processing tasks due to their versatile nature and high gain characteristics.

An op-amp typically has two input terminals (inverting and non-inverting), an output terminal, and a power supply. The output voltage of the op-amp is proportional to the difference between the voltages at the two input terminals, with the exact gain being determined by the circuit design.

Op-amps can be used in a variety of electronic circuits such as filters, amplifiers, oscillators, and voltage regulators. They can also be used as comparators, with the output switching to one of two voltage levels depending on the relationship between the two input voltages.

One of the main advantages of op-amps is that they can provide a very high gain, making them useful in amplifying small signals or reducing noise. They also have a wide range of input and output impedance, making them compatible with a wide range of electronic circuits. Additionally, op-amps can be designed to have very high input impedance, which means they can detect and amplify signals with minimal loading effects on the circuit they are connected to.