Microchip Technology Analog Special Purpose Converters 4

Reset All
Part RoHS Manufacturer Converter Type Temperature Grade Terminal Form No. of Terminals Package Code Package Shape Package Body Material Surface Mount Maximum Supply Voltage No. of Functions Technology Screening Level No. of Bits Maximum Supply Current Maximum Linearity Error (EL) Nominal Supply Voltage Minimum Negative Supply Voltage Power Supplies (V) Nominal Negative Supply Voltage Package Style (Meter) Package Equivalence Code Minimum Supply Voltage Terminal Pitch Maximum Operating Temperature Minimum Operating Temperature Terminal Finish Terminal Position Maximum Negative Supply Voltage JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Maximum Total Error Additional Features Maximum Negative Input Voltage JESD-609 Code Maximum Time At Peak Reflow Temperature (s) Peak Reflow Temperature (C) Maximum Positive Input Voltage Length Maximum Operating Frequency

TC9400COD

Microchip Technology

Voltage To Frequency Converter

Commercial

Gull Wing

14

SOP

Rectangular

Plastic/Epoxy

Yes

7.5 V

1

CMOS

TS 16949

10 mA

0.25 %

5 V

-4 V

±5 V

-5 V

Small Outline

SOP14,.25

4 V

0.05 in (1.27 mm)

70 °C (158 °F)

0 °C (32 °F)

Matte Tin

Dual

-7.5 V

R-PDSO-G14

1

0.069 in (1.75 mm)

0.154 in (3.9 mm)

Not Qualified

-2 V

e3

40 s

260 °C (500 °F)

5 V

0.341 in (8.65 mm)

100 kHz

TC9402CPD

Microchip Technology

Voltage To Frequency Converter

Commercial

Through-Hole

14

DIP

Rectangular

Plastic/Epoxy

No

7.5 V

1

CMOS

TS 16949

10 mA

0.25 %

5 V

-4 V

±5 V

-5 V

In-Line

DIP14,.3

4 V

0.1 in (2.54 mm)

70 °C (158 °F)

0 °C (32 °F)

Matte Tin

Dual

-7.5 V

R-PDIP-T14

0.2 in (5.08 mm)

0.3 in (7.62 mm)

Not Qualified

-2 V

e3

5 V

0.757 in (19.24 mm)

100 kHz

TC9401CPD

Microchip Technology

Voltage To Frequency Converter

Commercial

Through-Hole

14

DIP

Rectangular

Plastic/Epoxy

No

7.5 V

1

CMOS

TS 16949

10 mA

0.02 %

5 V

-4 V

±5 V

-5 V

In-Line

DIP14,.3

4 V

0.1 in (2.54 mm)

70 °C (158 °F)

0 °C (32 °F)

Matte Tin

Dual

-7.5 V

R-PDIP-T14

0.2 in (5.08 mm)

0.3 in (7.62 mm)

Not Qualified

-2 V

e3

5 V

0.757 in (19.24 mm)

100 kHz

TC9400CPD

Microchip Technology

Voltage To Frequency Converter

Commercial

Through-Hole

14

DIP

Rectangular

Plastic/Epoxy

No

7.5 V

1

CMOS

TS 16949

10 mA

0.25 %

5 V

-4 V

±5 V

-5 V

In-Line

DIP14,.3

4 V

0.1 in (2.54 mm)

70 °C (158 °F)

0 °C (32 °F)

Matte Tin

Dual

-7.5 V

R-PDIP-T14

0.2 in (5.08 mm)

0.3 in (7.62 mm)

Not Qualified

-2 V

e3

5 V

0.757 in (19.24 mm)

100 kHz

Analog Special Purpose Converters

Analog special purpose converters are electronic devices that convert physical analog signals into digital or other types of analog signals for specific applications. These converters are designed to perform a specific function or task, such as converting temperature, pressure, or light into digital signals. They are commonly used in industrial automation, medical devices, and scientific instruments.

There are several types of analog special purpose converters, including voltage-to-current converters, current-to-voltage converters, and digital-to-analog converters (DACs). Voltage-to-current converters convert an input voltage signal into an output current signal, while current-to-voltage converters do the opposite, converting an input current signal into an output voltage signal. DACs convert a digital signal into an analog signal, which can be used to control various systems, such as motors or actuators.

Analog special purpose converters are designed to be accurate and reliable, providing precise measurements and control signals for their specific applications. They often require calibration to ensure accurate operation, and they may include additional features, such as amplification, filtering, or signal conditioning.