Part | RoHS | Manufacturer | Converter Type | Temperature Grade | Terminal Form | No. of Terminals | Package Code | Package Shape | Package Body Material | Surface Mount | Maximum Supply Voltage | No. of Functions | Technology | Screening Level | No. of Bits | Maximum Supply Current | Maximum Linearity Error (EL) | Nominal Supply Voltage | Minimum Negative Supply Voltage | Power Supplies (V) | Nominal Negative Supply Voltage | Package Style (Meter) | Package Equivalence Code | Minimum Supply Voltage | Terminal Pitch | Maximum Operating Temperature | Minimum Operating Temperature | Terminal Finish | Terminal Position | Maximum Negative Supply Voltage | JESD-30 Code | Moisture Sensitivity Level (MSL) | Maximum Seated Height | Width | Qualification | Maximum Total Error | Additional Features | Maximum Negative Input Voltage | JESD-609 Code | Maximum Time At Peak Reflow Temperature (s) | Peak Reflow Temperature (C) | Maximum Positive Input Voltage | Length | Maximum Operating Frequency |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Onsemi |
Voltage To Frequency Converter |
Commercial |
Through-Hole |
8 |
DIP |
Rectangular |
Plastic/Epoxy |
No |
40 V |
1 |
Bipolar |
8 mA |
0.01 % |
5 V |
4.5/20 V |
In-Line |
DIP8,.3 |
4.5 V |
0.1 in (2.54 mm) |
70 °C (158 °F) |
0 °C (32 °F) |
Matte Tin |
Dual |
R-PDIP-T8 |
0.2 in (5.08 mm) |
0.3 in (7.62 mm) |
Not Qualified |
-0.2 V |
e3 |
3 V |
0.362 in (9.2 mm) |
100 kHz |
|||||||||||
Onsemi |
Digital to Analog Converter |
Industrial |
Through-Hole |
14 |
DIP |
Rectangular |
Plastic/Epoxy |
No |
Bipolar |
6 mA |
12 V |
12 V |
In-Line |
DIP14,.3 |
0.1 in (2.54 mm) |
85 °C (185 °F) |
-40 °C (-40 °F) |
Tin/Lead |
Dual |
R-PDIP-T14 |
Not Qualified |
e0 |
||||||||||||||||||||||
Onsemi |
Digital to Analog Converter |
Industrial |
Through-Hole |
8 |
DIP |
Rectangular |
Plastic/Epoxy |
No |
Bipolar |
6 mA |
12 V |
12 V |
In-Line |
DIP8,.3 |
0.1 in (2.54 mm) |
85 °C (185 °F) |
-40 °C (-40 °F) |
Tin/Lead |
Dual |
R-PDIP-T8 |
Not Qualified |
e0 |
||||||||||||||||||||||
Onsemi |
Digital to Analog Converter |
Industrial |
Through-Hole |
14 |
DIP |
Rectangular |
Plastic/Epoxy |
No |
Bipolar |
12 V |
12 V |
In-Line |
DIP14,.3 |
0.1 in (2.54 mm) |
85 °C (185 °F) |
-40 °C (-40 °F) |
Tin/Lead |
Dual |
R-PDIP-T14 |
Not Qualified |
e0 |
|||||||||||||||||||||||
Onsemi |
Digital to Analog Converter |
Industrial |
Through-Hole |
8 |
DIP |
Rectangular |
Plastic/Epoxy |
No |
Bipolar |
12 V |
12 V |
In-Line |
DIP8,.3 |
0.1 in (2.54 mm) |
85 °C (185 °F) |
-40 °C (-40 °F) |
Tin/Lead |
Dual |
R-PDIP-T8 |
Not Qualified |
e0 |
Analog special purpose converters are electronic devices that convert physical analog signals into digital or other types of analog signals for specific applications. These converters are designed to perform a specific function or task, such as converting temperature, pressure, or light into digital signals. They are commonly used in industrial automation, medical devices, and scientific instruments.
There are several types of analog special purpose converters, including voltage-to-current converters, current-to-voltage converters, and digital-to-analog converters (DACs). Voltage-to-current converters convert an input voltage signal into an output current signal, while current-to-voltage converters do the opposite, converting an input current signal into an output voltage signal. DACs convert a digital signal into an analog signal, which can be used to control various systems, such as motors or actuators.
Analog special purpose converters are designed to be accurate and reliable, providing precise measurements and control signals for their specific applications. They often require calibration to ensure accurate operation, and they may include additional features, such as amplification, filtering, or signal conditioning.