TFBGA Analog-to-Digital Converters 8

Reset All
Part RoHS Manufacturer Converter Type Temperature Grade Terminal Form No. of Terminals Package Code Package Shape Total Dose (V) Package Body Material No. of Analog In Channels Surface Mount Maximum Supply Voltage Maximum Analog Input Voltage Sample Rate No. of Functions Technology Screening Level Nominal Bandwidth No. of Bits Maximum Supply Current Maximum Linearity Error (EL) Nominal Supply Voltage Output Bit Code Power Supplies (V) Nominal Negative Supply Voltage Package Style (Meter) Package Equivalence Code Sub-Category Minimum Supply Voltage Terminal Pitch Maximum Operating Temperature Minimum Analog Input Voltage Output Format Minimum Operating Temperature Terminal Finish Sample and Hold/Track and Hold Terminal Position Maximum Conversion Time JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Time At Peak Reflow Temperature (s) Peak Reflow Temperature (C) Length Input Bit Code

MCP37D11-80E/TE

Microchip Technology

Analog To Digital Converter, Proprietary Method

Automotive

Ball

121

TFBGA

Square

Plastic/Epoxy

8

Yes

2.975 V

80 MHz

1

AEC-Q100

12

173 mA

1.2 V

2’s Complement, Offset Binary

Grid Array, Thin Profile, Fine Pitch

BGA121,11X11,25

0.026 in (0.65 mm)

125 °C (257 °F)

-2.975 V

Serial

-40 °C (-40 °F)

Bottom

4 ns

S-PBGA-B121

0.043 in (1.08 mm)

0.315 in (8 mm)

0.315 in (8 mm)

MCP37D21-80E/TE

Microchip Technology

Analog To Digital Converter, Pipelined

Automotive

Ball

121

TFBGA

Square

Plastic/Epoxy

8

Yes

4.46 V

80 MHz

1

AEC-Q100

14

173 mA

1.2 V

Offset Binary, 2's Complement Binary

Grid Array, Thin Profile, Fine Pitch

BGA121,11X11,25

0.026 in (0.65 mm)

125 °C (257 °F)

-4.46 V

Parallel, Word

-40 °C (-40 °F)

Sample

Bottom

12.5 ns

S-PBGA-B121

0.043 in (1.08 mm)

0.315 in (8 mm)

0.315 in (8 mm)

MCP37D31-200E/TE

Microchip Technology

Analog To Digital Converter, Flash Method

Automotive

Ball

121

TFBGA

Square

Plastic/Epoxy

8

Yes

4.46 V

200 MHz

1

AEC-Q100

16

300 mA

1.2 V

Offset Binary, 2's Complement Binary

Grid Array, Thin Profile, Fine Pitch

BGA121,11X11,25

0.026 in (0.65 mm)

125 °C (257 °F)

-4.46 V

Serial, Parallel, Word

-40 °C (-40 °F)

Sample

Bottom

25 ns

S-PBGA-B121

0.043 in (1.08 mm)

0.315 in (8 mm)

0.315 in (8 mm)

MAX19527EXE+

Maxim Integrated

Analog To Digital Converter, Flash Method

Industrial

Ball

144

TFBGA

Square

Plastic/Epoxy

8

Yes

1.5 V

50 MHz

1

12

0.042 %

1.8 V

Offset Binary, 2's Complement Binary

1.8 V

Grid Array, Thin Profile, Fine Pitch

BGA144,12X12,32

Analog to Digital Converters

0.031 in (0.8 mm)

85 °C (185 °F)

-1.5 V

Serial

-40 °C (-40 °F)

Track

Bottom

20 ns

S-PBGA-B144

0.047 in (1.2 mm)

0.394 in (10 mm)

No

30 s

260 °C (500 °F)

0.394 in (10 mm)

MAX19527EXE+T

Maxim Integrated

Analog To Digital Converter, Flash Method

Industrial

Ball

144

TFBGA

Square

Plastic/Epoxy

8

Yes

1.5 V

50 MHz

1

12

0.042 %

1.8 V

Offset Binary, 2's Complement Binary

Grid Array, Thin Profile, Fine Pitch

0.031 in (0.8 mm)

85 °C (185 °F)

-1.5 V

Serial

-40 °C (-40 °F)

Track

Bottom

20 ns

S-PBGA-B144

0.047 in (1.2 mm)

0.394 in (10 mm)

0.394 in (10 mm)

HD49351BP-E

Renesas Electronics

Analog To Digital Converter, Proprietary Method

Commercial Extended

Ball

65

TFBGA

Square

1

Yes

1

CMOS

10

3 V

Binary

Grid Array, Thin Profile, Fine Pitch

0.02 in (0.5 mm)

75 °C (167 °F)

Parallel, Word

-10 °C (14 °F)

Tin Silver Copper

Sample

Bottom

S-XBGA-B65

3

0.047 in (1.2 mm)

0.236 in (6 mm)

No

e1

0.236 in (6 mm)

HD49351BP

Renesas Electronics

Analog To Digital Converter, Proprietary Method

Commercial Extended

Ball

65

TFBGA

Square

1

Yes

3 V

1

CMOS

10

3 V

Binary

3 V

Grid Array, Thin Profile, Fine Pitch

BGA64,10X10,20

Other Converters

0.02 in (0.5 mm)

75 °C (167 °F)

Parallel, Word

-10 °C (14 °F)

Tin Lead

Sample

Bottom

S-XBGA-B65

0.047 in (1.2 mm)

0.236 in (6 mm)

No

e0

0.236 in (6 mm)

HD49351HBP

Renesas Electronics

Analog To Digital Converter, Proprietary Method

Commercial Extended

Ball

65

TFBGA

Square

1

Yes

3 V

1

CMOS

10

3 V

Binary

3 V

Grid Array, Thin Profile, Fine Pitch

BGA64,10X10,20

Other Converters

0.02 in (0.5 mm)

75 °C (167 °F)

Parallel, Word

-10 °C (14 °F)

Sample

Bottom

S-XBGA-B65

0.047 in (1.2 mm)

0.236 in (6 mm)

No

0.236 in (6 mm)

Analog-to-Digital Converters

Analog-to-digital converters (ADCs) are electronic devices that convert continuous analog signals into digital signals, which can be processed by digital circuits, microcontrollers, or computers. ADCs are essential components in many electronic systems, as they allow the measurement and processing of physical signals, such as temperature, pressure, light, and sound.

ADCs work by sampling the analog signal at regular intervals and quantizing the sampled signal into a series of digital values. The sampling rate and the resolution of the ADC determine the accuracy and the bandwidth of the digital signal. ADCs may also include features such as amplification, filtering, or signal conditioning, to improve the accuracy and stability of the digital signal.

ADCs can be classified based on their architecture and their application. The most common types of ADCs are successive approximation ADCs, delta-sigma ADCs, and pipeline ADCs. Each type has its advantages and limitations, depending on the application and the required performance.

ADCs are used in a wide range of applications, from consumer electronics, such as smartphones and digital cameras, to industrial automation, medical devices, and scientific instruments. They play a crucial role in the conversion of physical signals into digital signals, allowing the processing, storage, and transmission of data in electronic systems.

Overall, ADCs are essential components in many electronic systems, providing the necessary signal conversion for a wide range of applications. Their accuracy, speed, and resolution determine the performance and the functionality of many electronic devices and systems.