52 Bit-Slice Micro Processors 4

Reset All
Part RoHS Manufacturer Peripheral IC Type Temperature Grade Terminal Form No. of Terminals Package Code Package Shape Package Body Material Surface Mount Maximum Supply Voltage Screening Level Address Bus Width DAC Channels Bit Size Power Supplies (V) Package Style (Meter) Package Equivalence Code Minimum Supply Voltage Maximum Operating Temperature Minimum Operating Temperature Terminal Finish ADC Channels Terminal Position DMA Channels Maximum Seated Height Width Additional Features External Data Bus Width Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) Peak Reflow Temperature (C) Length Technology Maximum Supply Current Nominal Supply Voltage PWM Channels Sub-Category Terminal Pitch JESD-30 Code Moisture Sensitivity Level (MSL) Qualification Speed JESD-609 Code

ADSP-1401KP

Analog Devices

BIT-SLICE PROCESSOR, MICROPROGRAM SEQUENCER

COMMERCIAL

J BEND

52

QCCJ

SQUARE

PLASTIC/EPOXY

YES

5.25 V

5

CHIP CARRIER

LDCC52,.8SQ

4.75 V

70 Cel

0 Cel

TIN LEAD

QUAD

4.57 mm

19.1262 mm

16

19.1262 mm

CMOS

90 mA

5 V

Bit-Slice Processors

1.27 mm

S-PQCC-J52

Not Qualified

e0

ADSP-1410JP

Analog Devices

BIT-SLICE PROCESSOR, MICROPROGRAM SEQUENCER

COMMERCIAL

J BEND

52

QCCJ

SQUARE

PLASTIC/EPOXY

YES

5.25 V

5

CHIP CARRIER

LDCC52,.8SQ

4.75 V

70 Cel

0 Cel

TIN LEAD

QUAD

4.57 mm

19.1262 mm

16

10 MHz

19.1262 mm

CMOS

75 mA

5 V

Other Microprocessor ICs

1.27 mm

S-PQCC-J52

Not Qualified

e0

ADSP-1401JP

Analog Devices

BIT-SLICE PROCESSOR, MICROPROGRAM SEQUENCER

COMMERCIAL

J BEND

52

QCCJ

SQUARE

PLASTIC/EPOXY

YES

5.25 V

5

CHIP CARRIER

LDCC52,.8SQ

4.75 V

70 Cel

0 Cel

TIN LEAD

QUAD

4.57 mm

19.1262 mm

16

19.1262 mm

CMOS

90 mA

5 V

Bit-Slice Processors

1.27 mm

S-PQCC-J52

Not Qualified

e0

ADSP-1410KP

Analog Devices

BIT-SLICE PROCESSOR, MICROPROGRAM SEQUENCER

COMMERCIAL

J BEND

52

QCCJ

SQUARE

PLASTIC/EPOXY

YES

5.25 V

5

CHIP CARRIER

LDCC52,.8SQ

4.75 V

70 Cel

0 Cel

TIN LEAD

QUAD

4.57 mm

19.1262 mm

16

11.11 MHz

19.1262 mm

CMOS

75 mA

5 V

Other Microprocessor ICs

1.27 mm

S-PQCC-J52

Not Qualified

e0

Bit-Slice Micro Processors

A bit-slice microprocessor is a type of microprocessor that is designed to perform operations on a small group of bits, known as a "slice". Each slice typically contains a few bits of data and control logic, which can be combined to perform various operations.

Bit-slice microprocessors were first developed in the 1970s as a way to create powerful microprocessors using simple building blocks. Each slice typically contained a few gates or flip-flops, and these slices could be combined to create a more complex microprocessor. The advantage of this approach was that designers could create custom microprocessors for specific applications by selecting the appropriate slices.

One of the key benefits of bit-slice microprocessors is their flexibility. By combining different types of slices, designers can create microprocessors that are tailored to specific applications. For example, a bit-slice microprocessor designed for a control system might contain slices for digital input/output, analog-to-digital conversion, and control logic.

Another advantage of bit-slice microprocessors is their scalability. Because they are built from small, simple building blocks, designers can easily add or remove slices to increase or decrease the processing power of the microprocessor. This makes them well-suited for applications where the processing requirements may change over time.