1513 Field Programmable Gate Arrays (FPGA) 61

Reset All
Part RoHS Manufacturer Programmable IC Type Grading Of Temperature Form Of Terminal No. of Terminals Package Code Package Shape Total Dose (V) Package Body Material No. of Logic Cells Surface Mount Maximum Supply Voltage No. of CLBs Technology Used Screening Level No. of Inputs No. of Equivalent Gates Nominal Supply Voltage (V) Packing Method Power Supplies (V) Package Style (Meter) Package Equivalence Code Sub-Category Minimum Supply Voltage Pitch Of Terminal Maximum Operating Temperature Maximum Combinatorial Delay of a CLB Organization Minimum Operating Temperature Finishing Of Terminal Used Position Of Terminal JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) No. of Outputs Peak Reflow Temperature (C) Length

XC4VLX200-12FF1513C

Xilinx

FPGA

Other

Ball

1513

BGA

Square

Plastic/Epoxy

200448

Yes

1.26 V

22272

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

22272 CLBS

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e0

1205 MHz

30 s

960

225 °C (437 °F)

40 mm

XC4VLX200-10FF1513C

Xilinx

FPGA

Other

Ball

1513

BGA

Square

Plastic/Epoxy

200448

Yes

1.26 V

22272

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

22272 CLBS

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e0

1028 MHz

30 s

960

225 °C (437 °F)

40 mm

XC4VLX200-10FF1513IS2

Xilinx

FPGA

Ball

1513

BGA

Square

Plastic/Epoxy

200448

Yes

CMOS

960

1.2,1.2/3.3,2.5 V

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1 mm

Tin Lead

Bottom

S-PBGA-B1513

4

No

e0

1028 MHz

30 s

960

225 °C (437 °F)

XC4VLX160-10FFG1513C

Xilinx

FPGA

Other

Ball

1513

BGA

Square

Plastic/Epoxy

152064

Yes

1.26 V

16896

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

16896 CLBS

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e1

1028 MHz

30 s

960

245 °C (473 °F)

40 mm

XC4VLX100-10FF1513I

Xilinx

FPGA

Ball

1513

BGA

Square

Plastic/Epoxy

110592

Yes

1.26 V

12288

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

12288 CLBS

Tin Lead

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e0

1028 MHz

30 s

960

225 °C (437 °F)

40 mm

XC4VLX160-11FF1513CS2

Xilinx

FPGA

Ball

1513

BGA

Square

Plastic/Epoxy

152064

Yes

CMOS

960

1.2,1.2/3.3,2.5 V

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1 mm

Tin Lead

Bottom

S-PBGA-B1513

4

No

e0

1205 MHz

30 s

960

225 °C (437 °F)

XC4VLX100-11FFG1513CS2

Xilinx

FPGA

Ball

1513

BGA

Square

Plastic/Epoxy

110592

Yes

CMOS

960

1.2,1.2/3.3,2.5 V

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1 mm

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B1513

4

No

e1

1205 MHz

30 s

960

245 °C (473 °F)

XC4VLX100-10FFG1513IS2

Xilinx

FPGA

Ball

1513

BGA

Square

Plastic/Epoxy

110592

Yes

CMOS

960

1.2,1.2/3.3,2.5 V

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1 mm

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B1513

4

No

e1

1028 MHz

30 s

960

245 °C (473 °F)

XC4VLX160-11FFG1513I

Xilinx

FPGA

Ball

1513

BGA

Square

Plastic/Epoxy

152064

Yes

1.26 V

16896

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

16896 CLBS

Tin Silver Copper

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e1

1205 MHz

30 s

960

245 °C (473 °F)

40 mm

XC4VLX160-12FFG1513C

Xilinx

FPGA

Other

Ball

1513

BGA

Square

Plastic/Epoxy

152064

Yes

1.26 V

16896

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

16896 CLBS

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e1

1205 MHz

30 s

960

245 °C (473 °F)

40 mm

XC4VLX200-11FFG1513C

Xilinx

FPGA

Other

Ball

1513

BGA

Square

Plastic/Epoxy

200448

Yes

1.26 V

22272

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

22272 CLBS

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e1

1205 MHz

30 s

960

245 °C (473 °F)

40 mm

XC4VLX200-12FF1513I

Xilinx

FPGA

Ball

1513

BGA

Square

Plastic/Epoxy

Yes

1.26 V

22272

CMOS

1.2

Grid Array

1.14 V

1 mm

22272 CLBS

Tin Lead

Bottom

S-PBGA-B

4

3.25 mm

40 mm

No

e0

30 s

225 °C (437 °F)

40 mm

XC4VLX160-10FF1513C

Xilinx

FPGA

Other

Ball

1513

BGA

Square

Plastic/Epoxy

152064

Yes

1.26 V

16896

CMOS

960

1.2

Grid Array

BGA1513,39X39,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

16896 CLBS

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B1513

4

3.25 mm

40 mm

No

e0

1028 MHz

30 s

960

225 °C (437 °F)

40 mm

Field Programmable Gate Arrays (FPGA)

Field Programmable Gate Arrays (FPGAs) are digital integrated circuits that are programmable by the user to perform specific logic functions. They consist of a matrix of configurable logic blocks (CLBs) that can be programmed to perform any digital function, as well as programmable interconnects that allow these blocks to be connected in any way the designer wishes. This makes FPGAs highly versatile and customizable, and they are often used in applications where a high degree of flexibility and performance is required.

FPGAs are programmed using specialized software tools that allow the designer to specify the logic functions and interconnects that are required for a particular application. This process is known as synthesis and involves translating the high-level design into a format that can be implemented on the FPGA hardware. The resulting configuration data is then loaded onto the FPGA, allowing it to perform the desired logic functions.

FPGAs are used in a wide range of applications, including digital signal processing, computer networking, and high-performance computing. They offer a number of advantages over traditional fixed-function digital circuits, including the ability to be reprogrammed in the field, lower development costs, and faster time-to-market. However, they also have some disadvantages, including higher power consumption and lower performance compared to custom-designed digital circuits.