225 Field Programmable Gate Arrays (FPGA) 206

Reset All
Part RoHS Manufacturer Programmable IC Type Grading Of Temperature Form Of Terminal No. of Terminals Package Code Package Shape Total Dose (V) Package Body Material No. of Logic Cells Surface Mount Maximum Supply Voltage No. of CLBs Technology Used Screening Level No. of Inputs No. of Equivalent Gates Nominal Supply Voltage (V) Packing Method Power Supplies (V) Package Style (Meter) Package Equivalence Code Sub-Category Minimum Supply Voltage Pitch Of Terminal Maximum Operating Temperature Maximum Combinatorial Delay of a CLB Organization Minimum Operating Temperature Finishing Of Terminal Used Position Of Terminal JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) No. of Outputs Peak Reflow Temperature (C) Length

XC5215-3BG225C

Xilinx

FPGA

Other

Ball

225

BGA

Square

Plastic/Epoxy

484

Yes

5.25 V

484

CMOS

244

15000

5

5 V

Grid Array

BGA225,15X15

Field Programmable Gate Arrays

4.75 V

1.5 mm

85 °C (185 °F)

3 ns

484 CLBS, 15000 Gates

0 °C (32 °F)

Tin/Lead (Sn63Pb37)

Bottom

S-PBGA-B225

3

2.55 mm

27 mm

No

MAX available 23000 Logic gates

e0

83 MHz

30 s

244

225 °C (437 °F)

27 mm

XC6SLX4-3CSG225C

Xilinx

FPGA

Other

Ball

225

LFBGA

Square

Plastic/Epoxy

3840

Yes

1.26 V

300

CMOS

120

1.2

1.2,2.5/3.3 V

Grid Array, Low Profile, Fine Pitch

BGA225,15X15,32

Field Programmable Gate Arrays

1.14 V

.8 mm

85 °C (185 °F)

0.21 ns

300 CLBS

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B225

3

1.4 mm

13 mm

No

e1

862 MHz

30 s

120

260 °C (500 °F)

13 mm

XC7A50T-1CSG225I

Xilinx

FPGA

Ball

225

FBGA

Square

Plastic

52160

Yes

1.05 V

CMOS

100

1

1 V

Grid Array, Fine Pitch

BGA225,15X15,32

Field Programmable Gate Arrays

.95 V

.8 mm

100 °C (212 °F)

-40 °C (-40 °F)

Bottom

S-PBGA-B225

No

1098 MHz

100

XC4013E-3BGG225C

Xilinx

FPGA

Other

Ball

225

BGA

Square

Plastic/Epoxy

Yes

5.25 V

576

CMOS

10000

5

Grid Array

4.75 V

1.5 mm

85 °C (185 °F)

2 ns

576 CLBS, 10000 Gates

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B225

3

2.55 mm

27 mm

No

Max usable 13000 Logic gates

e1

125 MHz

27 mm

XC4013E-2BGG225C

Xilinx

FPGA

Other

Ball

225

BGA

Square

Plastic/Epoxy

Yes

5.25 V

576

CMOS

10000

5

Grid Array

4.75 V

1.5 mm

85 °C (185 °F)

1.6 ns

576 CLBS, 10000 Gates

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B225

3

2.55 mm

27 mm

No

Max usable 13000 Logic gates

e1

125 MHz

27 mm

XC8106-2BG225C

Xilinx

FPGA

Commercial

Ball

225

BGA

Square

Plastic/Epoxy

Yes

5.25 V

1728

CMOS

6000

5

Grid Array

4.75 V

1.5 mm

70 °C (158 °F)

1728 CLBS, 6000 Gates

0 °C (32 °F)

Bottom

S-PBGA-B225

3.5 mm

27 mm

No

864 flip-flops; 3.3 V operation; OTP based

27 mm

XC5215-4BGG225I

Xilinx

FPGA

Ball

225

BGA

Square

Plastic/Epoxy

Yes

5.5 V

484

CMOS

15000

5

Grid Array

4.5 V

1.5 mm

3.8 ns

484 CLBS, 15000 Gates

Tin Silver Copper

Bottom

S-PBGA-B225

3

3.5 mm

27 mm

No

Typical gates = 15000-23000

e1

83 MHz

27 mm

XC5415L-4BG225I

Xilinx

FPGA

Ball

225

BGA

Square

Plastic/Epoxy

Yes

3.3

Grid Array

1.5 mm

Bottom

S-PBGA-B225

2.55 mm

27 mm

No

27 mm

XC4010D-6BG225I

Xilinx

FPGA

Industrial

Ball

225

BGA

Square

Plastic/Epoxy

400

Yes

5.5 V

400

CMOS

160

8000

5

5 V

Grid Array

BGA225,15X15

Field Programmable Gate Arrays

4.5 V

1.5 mm

85 °C (185 °F)

6 ns

400 CLBS, 8000 Gates

-40 °C (-40 °F)

Tin Lead

Bottom

S-PBGA-B225

3

2.165 mm

27 mm

No

1120 flip-flops; typical gates = 8000-10000

e0

90.9 MHz

30 s

160

225 °C (437 °F)

27 mm

XC4010-6BG225I

Xilinx

FPGA

Industrial

Ball

225

BGA

Square

Plastic/Epoxy

400

Yes

5.5 V

400

CMOS

160

8000

5

5 V

Grid Array

BGA225,15X15

Field Programmable Gate Arrays

4.5 V

1.5 mm

85 °C (185 °F)

6 ns

400 CLBS, 8000 Gates

-40 °C (-40 °F)

Tin Lead

Bottom

S-PBGA-B225

3

2.165 mm

27 mm

No

1120 flip-flops; typical gates = 8000-10000

e0

90.9 MHz

30 s

160

225 °C (437 °F)

27 mm

XC8109-3BG225C

Xilinx

FPGA

Commercial

Ball

225

BGA

Square

Plastic/Epoxy

Yes

5.25 V

2688

CMOS

9000

5

Grid Array

4.75 V

1.5 mm

70 °C (158 °F)

2688 CLBS, 9000 Gates

0 °C (32 °F)

Bottom

S-PBGA-B225

3.5 mm

27 mm

No

1344 flip-flops; 3.3 V operation; OTP based

27 mm

XC5410L-4BG225I

Xilinx

FPGA

Ball

225

BGA

Square

Plastic/Epoxy

Yes

3.3

Grid Array

1.5 mm

Bottom

S-PBGA-B225

2.55 mm

27 mm

No

27 mm

XC5410L-4BG225C

Xilinx

FPGA

Ball

225

BGA

Square

Plastic/Epoxy

Yes

3.3

Grid Array

1.5 mm

Bottom

S-PBGA-B225

2.55 mm

27 mm

No

27 mm

XC4010E-3PG225C

Xilinx

FPGA

Other

Pin/Peg

225

PGA

Square

Ceramic, Metal-Sealed Cofired

No

5.25 V

400

7000

5

Grid Array

4.75 V

85 °C (185 °F)

2 ns

400 CLBS, 7000 Gates

0 °C (32 °F)

Matte Tin

Perpendicular

S-CPGA-P225

No

Can also use 20000 gates

e3

125 MHz

Field Programmable Gate Arrays (FPGA)

Field Programmable Gate Arrays (FPGAs) are digital integrated circuits that are programmable by the user to perform specific logic functions. They consist of a matrix of configurable logic blocks (CLBs) that can be programmed to perform any digital function, as well as programmable interconnects that allow these blocks to be connected in any way the designer wishes. This makes FPGAs highly versatile and customizable, and they are often used in applications where a high degree of flexibility and performance is required.

FPGAs are programmed using specialized software tools that allow the designer to specify the logic functions and interconnects that are required for a particular application. This process is known as synthesis and involves translating the high-level design into a format that can be implemented on the FPGA hardware. The resulting configuration data is then loaded onto the FPGA, allowing it to perform the desired logic functions.

FPGAs are used in a wide range of applications, including digital signal processing, computer networking, and high-performance computing. They offer a number of advantages over traditional fixed-function digital circuits, including the ability to be reprogrammed in the field, lower development costs, and faster time-to-market. However, they also have some disadvantages, including higher power consumption and lower performance compared to custom-designed digital circuits.