HCGA Field Programmable Gate Arrays (FPGA) 11

Reset All
Part RoHS Manufacturer Programmable IC Type Grading Of Temperature Form Of Terminal No. of Terminals Package Code Package Shape Total Dose (V) Package Body Material No. of Logic Cells Surface Mount Maximum Supply Voltage No. of CLBs Technology Used Screening Level No. of Inputs No. of Equivalent Gates Nominal Supply Voltage (V) Packing Method Power Supplies (V) Package Style (Meter) Package Equivalence Code Sub-Category Minimum Supply Voltage Pitch Of Terminal Maximum Operating Temperature Maximum Combinatorial Delay of a CLB Organization Minimum Operating Temperature Finishing Of Terminal Used Position Of Terminal JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) No. of Outputs Peak Reflow Temperature (C) Length

XQVR1000-4CG560M

Xilinx

FPGA

Military

560

HCGA

Square

100k Rad(Si)

Ceramic, Metal-Sealed Cofired

27648

Yes

2.625 V

6144

CMOS

404

1124022

2.5

1.2/3.6,2.5 V

Grid Array, Heat Sink/Slug

CGA560,33X33,50

Field Programmable Gate Arrays

2.375 V

1.27 mm

125 °C (257 °F)

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

404

42.5 mm

XQV1000-4CGG560Q

Xilinx

FPGA

Military

560

HCGA

Square

Ceramic, Metal-Sealed Cofired

27648

Yes

2.625 V

6144

CMOS

MIL-PRF-38535 Class Q

1124022

2.5

Grid Array, Heat Sink/Slug

2.375 V

1.27 mm

125 °C (257 °F)

0.8 ns

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Matte Tin

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e3

42.5 mm

XQV1000-4CG560M

Xilinx

FPGA

Military

560

HCGA

Square

Ceramic, Metal-Sealed Cofired

27648

Yes

2.625 V

6144

CMOS

MIL-PRF-38535

404

1124022

2.5

1.2/3.6,2.5 V

Grid Array, Heat Sink/Slug

CGA560,33X33,50

Field Programmable Gate Arrays

2.375 V

1.27 mm

125 °C (257 °F)

0.8 ns

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Tin Lead

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e0

404

42.5 mm

XQVR1000-4CG560V

Xilinx

FPGA

Military

560

HCGA

Square

100k Rad(Si)

Ceramic, Metal-Sealed Cofired

27648

Yes

2.625 V

6144

CMOS

404

1124022

2.5

1.5/3.3,2.5 V

Grid Array, Heat Sink/Slug

CGA560,33X33,50

Field Programmable Gate Arrays

2.375 V

1.27 mm

125 °C (257 °F)

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Tin Lead

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e0

404

42.5 mm

XQVR1000-4CGG560V

Xilinx

FPGA

Military

560

HCGA

Square

100k Rad(Si)

Ceramic, Metal-Sealed Cofired

Yes

2.625 V

6144

CMOS

1124022

2.5

Grid Array, Heat Sink/Slug

2.375 V

1.27 mm

125 °C (257 °F)

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Matte Tin

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e3

42.5 mm

XQVR1000-4CG560Q

Xilinx

FPGA

Military

560

HCGA

Square

100k Rad(Si)

Ceramic, Metal-Sealed Cofired

27648

Yes

2.625 V

6144

CMOS

MIL-PRF-38535 Class Q

404

1124022

2.5

1.2/3.6,2.5 V

Grid Array, Heat Sink/Slug

CGA560,33X33,50

Field Programmable Gate Arrays

2.375 V

1.27 mm

125 °C (257 °F)

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Tin Lead

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e0

404

42.5 mm

XQV1000-4CG560Q

Xilinx

FPGA

Military

560

HCGA

Square

Ceramic, Metal-Sealed Cofired

Yes

2.625 V

6144

CMOS

MIL-PRF-38535 Class Q

1124022

2.5

Grid Array, Heat Sink/Slug

2.375 V

1.27 mm

125 °C (257 °F)

0.8 ns

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Tin Lead

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e0

42.5 mm

XQVR1000-4CGG560M

Xilinx

FPGA

Military

560

HCGA

Square

100k Rad(Si)

Ceramic, Metal-Sealed Cofired

Yes

2.625 V

6144

CMOS

1124022

2.5

Grid Array, Heat Sink/Slug

2.375 V

1.27 mm

125 °C (257 °F)

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Matte Tin

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e3

42.5 mm

5962-9957401QXC

Xilinx

FPGA

Military

560

HCGA

Square

Ceramic, Metal-Sealed Cofired

Yes

2.625 V

6144

CMOS

MIL-PRF-38535 Class Q

1124022

2.5

Grid Array, Heat Sink/Slug

2.375 V

1.27 mm

125 °C (257 °F)

0.8 ns

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Gold

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e4

42.5 mm

5962R9957401QXC

Xilinx

FPGA

Military

560

HCGA

Square

100k Rad(Si)

Ceramic, Metal-Sealed Cofired

Yes

2.625 V

6144

CMOS

MIL-PRF-38535 Class Q

1124022

2.5

Grid Array, Heat Sink/Slug

2.375 V

1.27 mm

125 °C (257 °F)

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Tin Lead

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e0

42.5 mm

XQVR1000-4CGG560Q

Xilinx

FPGA

Military

560

HCGA

Square

100k Rad(Si)

Ceramic, Metal-Sealed Cofired

27648

Yes

2.625 V

6144

CMOS

MIL-PRF-38535 Class Q

1124022

2.5

Grid Array, Heat Sink/Slug

2.375 V

1.27 mm

125 °C (257 °F)

6144 CLBS, 1124022 Gates

-55 °C (-67 °F)

Matte Tin

Bottom

S-CBGA-X560

4.9 mm

42.5 mm

No

e3

42.5 mm

Field Programmable Gate Arrays (FPGA)

Field Programmable Gate Arrays (FPGAs) are digital integrated circuits that are programmable by the user to perform specific logic functions. They consist of a matrix of configurable logic blocks (CLBs) that can be programmed to perform any digital function, as well as programmable interconnects that allow these blocks to be connected in any way the designer wishes. This makes FPGAs highly versatile and customizable, and they are often used in applications where a high degree of flexibility and performance is required.

FPGAs are programmed using specialized software tools that allow the designer to specify the logic functions and interconnects that are required for a particular application. This process is known as synthesis and involves translating the high-level design into a format that can be implemented on the FPGA hardware. The resulting configuration data is then loaded onto the FPGA, allowing it to perform the desired logic functions.

FPGAs are used in a wide range of applications, including digital signal processing, computer networking, and high-performance computing. They offer a number of advantages over traditional fixed-function digital circuits, including the ability to be reprogrammed in the field, lower development costs, and faster time-to-market. However, they also have some disadvantages, including higher power consumption and lower performance compared to custom-designed digital circuits.