176 Programmable Logic Devices (PLD) 14

Reset All
Part RoHS Manufacturer Programmable IC Type Grading Of Temperature Form Of Terminal No. of Terminals Package Code Package Shape Package Body Material Propagation Delay No. of Logic Cells Surface Mount Maximum Supply Voltage No. of Macro Cells Technology Used Screening Level No. of Inputs Architecture Nominal Supply Voltage (V) Packing Method Power Supplies (V) Package Style (Meter) Package Equivalence Code Sub-Category In-System Programmable Output Function Minimum Supply Voltage No. of Product Terms Pitch Of Terminal Maximum Operating Temperature Organization No. of Dedicated Inputs Minimum Operating Temperature Finishing Of Terminal Used Position Of Terminal JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) No. of Outputs Peak Reflow Temperature (C) Length JTAG Boundary Scan Test No. of I/O Lines

LC4256V-75TN176C

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

90 °C (194 °F)

4 Dedicated Inputs, 128 I/O

4

0 °C (32 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

111 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4384V-75TN176C

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

384

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

90 °C (194 °F)

4 Dedicated Inputs, 128 I/O

4

0 °C (32 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

111 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4256V-10TN176I

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

10 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

105 °C (221 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

86 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4384V-10TN176I

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

10 ns

Yes

3.6 V

384

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

105 °C (221 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

86 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4512V-75TN176C

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

512

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

90 °C (194 °F)

4 Dedicated Inputs, 128 I/O

4

0 °C (32 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

111 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4256V-75TN176I

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

105 °C (221 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

111 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4512V-10TN176I

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

10 ns

Yes

3.6 V

512

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

105 °C (221 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

86 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4256V-10T176I

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

10 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

105 °C (221 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Tin Lead

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e0

86 MHz

30 s

128

256 °C (492.8 °F)

21 mm

Yes

128

LC4256V-3TN176C

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

3 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

90 °C (194 °F)

4 Dedicated Inputs, 128 I/O

4

0 °C (32 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

212 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4256V-5TN176C

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

5 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

90 °C (194 °F)

4 Dedicated Inputs, 128 I/O

4

0 °C (32 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

156 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4256V-5TN176I

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

5 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

105 °C (221 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

156 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4384V-75TN176I

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

384

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

105 °C (221 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

111 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

LC4256V-75T176E

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

130 °C (266 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Tin Lead

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e0

111 MHz

30 s

128

256 °C (492.8 °F)

21 mm

Yes

128

LC4256V-75TN176E

Lattice Semiconductor

EE PLD

Gull Wing

176

LFQFP

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

256

132

PAD-TYPE

3.3

3.3 V

Flatpack, Low Profile, Fine Pitch

QFP176,1.0SQ,20

Programmable Logic Devices

Yes

Macrocell

3 V

83

.5 mm

130 °C (266 °F)

4 Dedicated Inputs, 128 I/O

4

-40 °C (-40 °F)

Matte Tin

Quad

S-PQFP-G176

3

1.6 mm

21 mm

No

e3

111 MHz

40 s

128

260 °C (500 °F)

21 mm

Yes

128

Programmable Logic Devices (PLD)

Programmable Logic Devices (PLDs) are digital circuits that are designed to be programmed by the user to perform specific logic functions. They consist of an array of configurable logic blocks (CLBs) that can be programmed to perform any digital function, as well as programmable interconnects that allow these blocks to be connected in any way the designer wishes. This makes PLDs highly versatile and customizable, and they are often used in applications where a high degree of flexibility and performance is required.

PLDs are programmed using specialized software tools that allow the designer to specify the logic functions and interconnects that are required for a particular application. This process is known as synthesis and involves translating the high-level design into a format that can be implemented on the PLD hardware. The resulting configuration data is then loaded onto the PLD, allowing it to perform the desired logic functions.

PLDs are used in a wide range of applications, including digital signal processing, computer networking, and high-performance computing. They offer a number of advantages over traditional fixed-function digital circuits, including the ability to be reprogrammed in the field, lower development costs, and faster time-to-market. However, they also have some disadvantages, including higher power consumption and lower performance compared to custom-designed digital circuits.