668 Field Programmable Gate Arrays (FPGA) 158

Reset All
Part RoHS Manufacturer Programmable IC Type Grading Of Temperature Form Of Terminal No. of Terminals Package Code Package Shape Total Dose (V) Package Body Material No. of Logic Cells Surface Mount Maximum Supply Voltage No. of CLBs Technology Used Screening Level No. of Inputs No. of Equivalent Gates Nominal Supply Voltage (V) Packing Method Power Supplies (V) Package Style (Meter) Package Equivalence Code Sub-Category Minimum Supply Voltage Pitch Of Terminal Maximum Operating Temperature Maximum Combinatorial Delay of a CLB Organization Minimum Operating Temperature Finishing Of Terminal Used Position Of Terminal JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) No. of Outputs Peak Reflow Temperature (C) Length

XC4VLX25-12FFG668C

Xilinx

FPGA

Other

Ball

668

BGA

Square

Plastic/Epoxy

24192

Yes

1.26 V

2688

CMOS

448

1.2

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

2688 CLBS

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B668

4

2.85 mm

27 mm

No

e1

1205 MHz

30 s

448

250 °C (482 °F)

27 mm

XC4VSX35-11FF668C

Xilinx

FPGA

Other

Ball

668

BGA

Square

Plastic/Epoxy

34560

Yes

1.26 V

3840

CMOS

448

1.2

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1.14 V

1 mm

85 °C (185 °F)

3840 CLBS

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B668

4

2.85 mm

27 mm

No

e0

1205 MHz

30 s

448

225 °C (437 °F)

27 mm

XC4VSX35-10FFG668IS2

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

34560

Yes

CMOS

448

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B668

4

No

e1

1028 MHz

30 s

448

250 °C (482 °F)

XC4VSX25-10FFG668CS2

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

23040

Yes

CMOS

320

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B668

4

No

e1

1028 MHz

30 s

320

250 °C (482 °F)

XC4VFX12-10FF668CS1

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

12312

Yes

CMOS

320

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin/Lead (Sn63Pb37)

Bottom

S-PBGA-B668

4

No

e0

1028 MHz

320

XC4VLX40-11FFG668CS2

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

41472

Yes

CMOS

448

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin Silver Copper

Bottom

S-PBGA-B668

4

No

e1

1205 MHz

30 s

448

250 °C (482 °F)

XC4VLX25-11FFG668I

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

24192

Yes

1.26 V

2688

CMOS

448

1.2

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1.14 V

1 mm

2688 CLBS

Tin Silver Copper

Bottom

S-PBGA-B668

4

2.85 mm

27 mm

No

e1

1205 MHz

30 s

448

250 °C (482 °F)

27 mm

XC4VFX12-11FFG668IS1

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

12312

Yes

CMOS

320

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B668

4

No

e1

1181 MHz

30 s

320

250 °C (482 °F)

XC4VSX25-12FFG668CS2

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

23040

Yes

CMOS

320

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B668

4

No

e1

1205 MHz

30 s

320

250 °C (482 °F)

XC4VLX15-12FF668I

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

Yes

1.26 V

1536

CMOS

1.2

Grid Array

1.14 V

1 mm

1536 CLBS

Tin Lead

Bottom

S-PBGA-B668

4

2.85 mm

27 mm

No

e0

30 s

225 °C (437 °F)

27 mm

XC4VLX25-10FFG668IS2

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

24192

Yes

CMOS

448

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin Silver Copper

Bottom

S-PBGA-B668

4

No

e1

1028 MHz

30 s

448

250 °C (482 °F)

XC4VFX12-10FFG668CS1

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

12312

Yes

CMOS

320

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B668

4

No

e1

1028 MHz

30 s

320

250 °C (482 °F)

XC4VFX12-11FF668CS1

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

12312

Yes

CMOS

320

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1 mm

Tin/Lead (Sn63Pb37)

Bottom

S-PBGA-B668

4

No

e0

1181 MHz

320

XQ4VLX40-10FF668I

Xilinx

FPGA

Ball

668

BGA

Square

Plastic/Epoxy

41472

Yes

1.26 V

4608

CMOS

640

1.2

1.2,1.2/3.3,2.5 V

Grid Array

BGA668,26X26,40

Field Programmable Gate Arrays

1.14 V

1 mm

4608 CLBS

Tin Lead

Bottom

S-PBGA-B668

4

2.85 mm

27 mm

No

e0

1028 MHz

30 s

640

225 °C (437 °F)

27 mm

Field Programmable Gate Arrays (FPGA)

Field Programmable Gate Arrays (FPGAs) are digital integrated circuits that are programmable by the user to perform specific logic functions. They consist of a matrix of configurable logic blocks (CLBs) that can be programmed to perform any digital function, as well as programmable interconnects that allow these blocks to be connected in any way the designer wishes. This makes FPGAs highly versatile and customizable, and they are often used in applications where a high degree of flexibility and performance is required.

FPGAs are programmed using specialized software tools that allow the designer to specify the logic functions and interconnects that are required for a particular application. This process is known as synthesis and involves translating the high-level design into a format that can be implemented on the FPGA hardware. The resulting configuration data is then loaded onto the FPGA, allowing it to perform the desired logic functions.

FPGAs are used in a wide range of applications, including digital signal processing, computer networking, and high-performance computing. They offer a number of advantages over traditional fixed-function digital circuits, including the ability to be reprogrammed in the field, lower development costs, and faster time-to-market. However, they also have some disadvantages, including higher power consumption and lower performance compared to custom-designed digital circuits.