56 Programmable Logic Devices (PLD) 58

Reset All
Part RoHS Manufacturer Programmable IC Type Grading Of Temperature Form Of Terminal No. of Terminals Package Code Package Shape Package Body Material Propagation Delay No. of Logic Cells Surface Mount Maximum Supply Voltage No. of Macro Cells Technology Used Screening Level No. of Inputs Architecture Nominal Supply Voltage (V) Packing Method Power Supplies (V) Package Style (Meter) Package Equivalence Code Sub-Category In-System Programmable Output Function Minimum Supply Voltage No. of Product Terms Pitch Of Terminal Maximum Operating Temperature Organization No. of Dedicated Inputs Minimum Operating Temperature Finishing Of Terminal Used Position Of Terminal JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) No. of Outputs Peak Reflow Temperature (C) Length JTAG Boundary Scan Test No. of I/O Lines

XCR3064XL-10CP56C

Xilinx

EE PLD

Commercial

Ball

56

LFBGA

Square

Plastic/Epoxy

10 ns

Yes

3.6 V

64

CMOS

3.3

3.3 V

Grid Array, Low Profile, Fine Pitch

BGA56,10X10,20

Programmable Logic Devices

Yes

Macrocell

3 V

.5 mm

70 °C (158 °F)

0 Dedicated Inputs, 48 I/O

0

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

e0

95 MHz

30 s

240 °C (464 °F)

6 mm

Yes

48

XC2C32A-3CP56C

Xilinx

Flash PLD

Commercial

Ball

56

LFBGA

Square

Plastic/Epoxy

3 ns

Yes

1.9 V

CMOS

1.8

Grid Array, Low Profile, Fine Pitch

Macrocell

1.7 V

.5 mm

70 °C (158 °F)

33 I/O

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

e0

500 MHz

6 mm

33

XCR3064XL-7CP56I

Xilinx

EE PLD

Industrial

Ball

56

LFBGA

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

64

CMOS

3.3

3/3.3 V

Grid Array, Low Profile, Fine Pitch

BGA56,10X10,20

Programmable Logic Devices

Yes

Macrocell

2.7 V

.5 mm

85 °C (185 °F)

0 Dedicated Inputs, 48 I/O

0

-40 °C (-40 °F)

Tin Lead

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

e0

119 MHz

30 s

240 °C (464 °F)

6 mm

Yes

48

XCR3064XL-7CPG56I

Xilinx

EE PLD

Industrial

Ball

56

LFBGA

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

64

CMOS

3.3

3/3.3 V

Grid Array, Low Profile, Fine Pitch

BGA56,10X10,20

Programmable Logic Devices

Yes

Macrocell

2.7 V

.5 mm

85 °C (185 °F)

0 Dedicated Inputs, 48 I/O

0

-40 °C (-40 °F)

Tin Silver Copper

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

e1

119 MHz

30 s

260 °C (500 °F)

6 mm

Yes

48

XCR3064XL-7CP56C

Xilinx

EE PLD

Commercial

Ball

56

LFBGA

Square

Plastic/Epoxy

7.5 ns

Yes

3.6 V

64

CMOS

3.3

3.3 V

Grid Array, Low Profile, Fine Pitch

BGA56,10X10,20

Programmable Logic Devices

Yes

Macrocell

3 V

.5 mm

70 °C (158 °F)

0 Dedicated Inputs, 48 I/O

0

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

e0

119 MHz

30 s

240 °C (464 °F)

6 mm

Yes

48

XC2C64-5CP56I

Xilinx

Flash PLD

Industrial

Ball

56

LFBGA

Square

Plastic/Epoxy

5 ns

Yes

1.9 V

64

CMOS

1.8

1.5/3.3,1.8 V

Grid Array, Low Profile, Fine Pitch

BGA56,10X10,20

Programmable Logic Devices

Yes

Macrocell

1.7 V

.5 mm

85 °C (185 °F)

0 Dedicated Inputs, 45 I/O

0

-40 °C (-40 °F)

Tin/Lead (Sn63Pb37)

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

e0

30 s

240 °C (464 °F)

6 mm

Yes

45

XC2C64-7CPG56I

Xilinx

Flash PLD

Industrial

Ball

56

LFBGA

Square

Plastic/Epoxy

7.5 ns

Yes

1.9 V

64

CMOS

1.8

1.5/3.3,1.8 V

Grid Array, Low Profile, Fine Pitch

BGA56,10X10,20

Programmable Logic Devices

Yes

Macrocell

1.7 V

.5 mm

85 °C (185 °F)

0 Dedicated Inputs, 45 I/O

0

-40 °C (-40 °F)

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

Real Digital Design Technology

e1

30 s

260 °C (500 °F)

6 mm

Yes

45

XC2C32-6CPG56C

Xilinx

Flash PLD

Commercial

Ball

56

LFBGA

Square

Plastic/Epoxy

6 ns

Yes

1.9 V

32

CMOS

1.8

1.5/3.3,1.8 V

Grid Array, Low Profile, Fine Pitch

BGA56,10X10,20

Programmable Logic Devices

Yes

Macrocell

1.7 V

.5 mm

70 °C (158 °F)

1 Dedicated Inputs, 33 I/O

1

0 °C (32 °F)

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

Real Digital Design Technology

e1

30 s

260 °C (500 °F)

6 mm

Yes

33

XC2C64-5CPG56I

Xilinx

Flash PLD

Industrial

Ball

56

LFBGA

Square

Plastic/Epoxy

5 ns

Yes

1.9 V

CMOS

1.8

Grid Array, Low Profile, Fine Pitch

Macrocell

1.7 V

.5 mm

85 °C (185 °F)

0 Dedicated Inputs, 45 I/O

0

-40 °C (-40 °F)

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

e1

30 s

260 °C (500 °F)

6 mm

45

XC2C32-4CPG56I

Xilinx

Flash PLD

Industrial

Ball

56

LFBGA

Square

Plastic/Epoxy

4.5 ns

Yes

1.9 V

CMOS

1.8

Grid Array, Low Profile, Fine Pitch

Macrocell

1.7 V

.5 mm

85 °C (185 °F)

1 Dedicated Inputs, 33 I/O

1

-40 °C (-40 °F)

Tin/Silver/Copper (Sn95.5Ag4.0Cu0.5)

Bottom

S-PBGA-B56

3

1.35 mm

6 mm

No

Fast Zero Power Design Technology

e1

30 s

260 °C (500 °F)

6 mm

33

Programmable Logic Devices (PLD)

Programmable Logic Devices (PLDs) are digital circuits that are designed to be programmed by the user to perform specific logic functions. They consist of an array of configurable logic blocks (CLBs) that can be programmed to perform any digital function, as well as programmable interconnects that allow these blocks to be connected in any way the designer wishes. This makes PLDs highly versatile and customizable, and they are often used in applications where a high degree of flexibility and performance is required.

PLDs are programmed using specialized software tools that allow the designer to specify the logic functions and interconnects that are required for a particular application. This process is known as synthesis and involves translating the high-level design into a format that can be implemented on the PLD hardware. The resulting configuration data is then loaded onto the PLD, allowing it to perform the desired logic functions.

PLDs are used in a wide range of applications, including digital signal processing, computer networking, and high-performance computing. They offer a number of advantages over traditional fixed-function digital circuits, including the ability to be reprogrammed in the field, lower development costs, and faster time-to-market. However, they also have some disadvantages, including higher power consumption and lower performance compared to custom-designed digital circuits.