324 Programmable Logic Devices (PLD) 155

Reset All
Part RoHS Manufacturer Programmable IC Type Grading Of Temperature Form Of Terminal No. of Terminals Package Code Package Shape Package Body Material Propagation Delay No. of Logic Cells Surface Mount Maximum Supply Voltage No. of Macro Cells Technology Used Screening Level No. of Inputs Architecture Nominal Supply Voltage (V) Packing Method Power Supplies (V) Package Style (Meter) Package Equivalence Code Sub-Category In-System Programmable Output Function Minimum Supply Voltage No. of Product Terms Pitch Of Terminal Maximum Operating Temperature Organization No. of Dedicated Inputs Minimum Operating Temperature Finishing Of Terminal Used Position Of Terminal JESD-30 Code Moisture Sensitivity Level (MSL) Maximum Seated Height Width Qualification Additional Features JESD-609 Code Maximum Clock Frequency Maximum Time At Peak Reflow Temperature (s) No. of Outputs Peak Reflow Temperature (C) Length JTAG Boundary Scan Test No. of I/O Lines

EP20K30EFC324-1

Altera

Loadable PLD

Other

Ball

324

BGA

Square

Plastic/Epoxy

1.91 ns

1200

Yes

1.89 V

CMOS

120

1.8

1.8,1.8/3.3 V

Grid Array

BGA324,18X18,40

Field Programmable Gate Arrays

Macrocell

1.71 V

1 mm

85 °C (185 °F)

4 Dedicated Inputs, 128 I/O

4

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B324

3

2.1 mm

19 mm

No

e1

160 MHz

120

220 °C (428 °F)

19 mm

128

EPM2210GF324I5

Altera

Flash PLD

Ball

324

BGA

Square

Plastic/Epoxy

11.2 ns

Yes

1.89 V

1700

CMOS

1.8

1.5/3.3,1.8 V

Grid Array

BGA324,18X18,40

Programmable Logic Devices

Yes

Macrocell

1.71 V

1 mm

0 Dedicated Inputs, 272 I/O

0

Tin Lead

Bottom

S-PBGA-B324

3

2.2 mm

19 mm

No

e0

20 s

220 °C (428 °F)

19 mm

Yes

272

EPM2210GF324C3

Altera

Flash PLD

Commercial Extended

Ball

324

BGA

Square

Plastic/Epoxy

7 ns

Yes

1.89 V

1700

CMOS

1.8

1.5/3.3,1.8 V

Grid Array

BGA324,18X18,40

Programmable Logic Devices

Yes

Macrocell

1.71 V

1 mm

85 °C (185 °F)

0 Dedicated Inputs, 272 I/O

0

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B324

3

2.2 mm

19 mm

No

e0

20 s

220 °C (428 °F)

19 mm

Yes

272

EPM2210GF324C4N

Altera

Flash PLD

Other

Ball

324

BGA

Square

Plastic/Epoxy

9.1 ns

Yes

1.89 V

1700

CMOS

1.8

1.5/3.3,1.8 V

Grid Array

BGA324,18X18,40

Programmable Logic Devices

Yes

Macrocell

1.71 V

1 mm

85 °C (185 °F)

0 Dedicated Inputs, 272 I/O

0

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B324

3

2.2 mm

19 mm

No

It can also operate at 3.3 V

e1

30 s

260 °C (500 °F)

19 mm

Yes

272

EP20K100EFC324-1

Altera

Loadable PLD

Other

Ball

324

BGA

Square

Plastic/Epoxy

1.73 ns

4160

Yes

1.89 V

CMOS

238

1.8

1.8,1.8/3.3 V

Grid Array

BGA324,18X18,40

Field Programmable Gate Arrays

Macrocell

1.71 V

1 mm

85 °C (185 °F)

4 Dedicated Inputs, 246 I/O

4

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B324

3

3.5 mm

19 mm

No

e0

160 MHz

20 s

238

220 °C (428 °F)

19 mm

246

EP20K60EFC324-1XN

Altera

Loadable PLD

Other

Ball

324

BGA

Square

Plastic/Epoxy

1.72 ns

Yes

1.89 V

CMOS

1.8

Grid Array

Macrocell

1.71 V

1 mm

85 °C (185 °F)

4 Dedicated Inputs, 196 I/O

4

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B324

3

3.5 mm

19 mm

No

e1

160 MHz

245 °C (473 °F)

19 mm

196

5M2210ZF324I5

Altera

Flash PLD

Industrial

Ball

324

LBGA

Square

Plastic/Epoxy

11.2 ns

Yes

1.89 V

1700

CMOS

1.8

1.8,1.2/3.3 V

Grid Array, Low Profile

BGA324,18X18,40

Programmable Logic Devices

Yes

Macrocell

1.71 V

1 mm

100 °C (212 °F)

271 I/O

-40 °C (-40 °F)

Tin Lead

Bottom

S-PBGA-B324

1.55 mm

19 mm

No

e0

201.1 MHz

19 mm

Yes

271

5M2210ZF324C5

Altera

Flash PLD

Other

Ball

324

LBGA

Square

Plastic/Epoxy

11.2 ns

Yes

1.89 V

1700

CMOS

1.8

1.8,1.2/3.3 V

Grid Array, Low Profile

BGA324,18X18,40

Programmable Logic Devices

Yes

Macrocell

1.71 V

1 mm

85 °C (185 °F)

271 I/O

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B324

1.55 mm

19 mm

No

e0

201.1 MHz

19 mm

Yes

271

EP20K100EFC324-2XN

Altera

Loadable PLD

Other

Ball

324

BGA

Square

Plastic/Epoxy

2.02 ns

Yes

1.89 V

CMOS

1.8

Grid Array

Macrocell

1.71 V

1 mm

85 °C (185 °F)

4 Dedicated Inputs, 246 I/O

4

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B324

3

3.5 mm

19 mm

No

e1

160 MHz

245 °C (473 °F)

19 mm

246

EP20K100FC324-3X

Altera

Loadable PLD

Other

Ball

324

BGA

Square

Plastic/Epoxy

3.6 ns

Yes

2.625 V

CMOS

2.5

Grid Array

Macrocell

2.375 V

1 mm

85 °C (185 °F)

4 Dedicated Inputs, 252 I/O

4

0 °C (32 °F)

Tin Silver Copper

Bottom

S-PBGA-B324

3

3.5 mm

19 mm

No

e1

220 °C (428 °F)

19 mm

252

EP20K100FC324-1X

Altera

Loadable PLD

Other

Ball

324

BGA

Square

Plastic/Epoxy

2.5 ns

4160

Yes

2.625 V

CMOS

246

2.5

2.5,2.5/3.3 V

Grid Array

BGA324,18X18,40

Field Programmable Gate Arrays

Macrocell

2.375 V

1 mm

85 °C (185 °F)

4 Dedicated Inputs, 252 I/O

4

0 °C (32 °F)

Tin Lead

Bottom

S-PBGA-B324

3

3.5 mm

19 mm

No

e0

20 s

246

220 °C (428 °F)

19 mm

252

Programmable Logic Devices (PLD)

Programmable Logic Devices (PLDs) are digital circuits that are designed to be programmed by the user to perform specific logic functions. They consist of an array of configurable logic blocks (CLBs) that can be programmed to perform any digital function, as well as programmable interconnects that allow these blocks to be connected in any way the designer wishes. This makes PLDs highly versatile and customizable, and they are often used in applications where a high degree of flexibility and performance is required.

PLDs are programmed using specialized software tools that allow the designer to specify the logic functions and interconnects that are required for a particular application. This process is known as synthesis and involves translating the high-level design into a format that can be implemented on the PLD hardware. The resulting configuration data is then loaded onto the PLD, allowing it to perform the desired logic functions.

PLDs are used in a wide range of applications, including digital signal processing, computer networking, and high-performance computing. They offer a number of advantages over traditional fixed-function digital circuits, including the ability to be reprogrammed in the field, lower development costs, and faster time-to-market. However, they also have some disadvantages, including higher power consumption and lower performance compared to custom-designed digital circuits.